domingo, 15 de mayo de 2016

ELECTRICIDAD


Es el conjunto de fenómenos físicos relacionados con la presencia y flujo de cargas eléctricas. Se manifiesta en una gran variedad de fenómenos como los rayos, la electricidad estática, la inducción electromagnética o el flujo de corriente. Es una forma de energía tan versátil que tiene un sinnúmero de aplicaciones, por ejemplo: transporte, climatización, iluminación y computación.




HISTORIA DE LA ELECTRICIDAD

La electricidad evolucionó históricamente desde la simple percepción del fenómeno, a su tratamiento científico, que no se haría sistemático hasta el siglo XVIII. Se registraron a lo largo de la Edad Antigua y Media otras observaciones aisladas y simples especulaciones, así como intuiciones médicas (uso de peces en enfermedades como la gota y el dolor de cabeza) referidas por autores como Plinio el Viejo y Escribonio Largo, u objetos arqueológicos de interpretación discutible, como la Batería de Bagdad, un objeto encontrado en Irak en 1938, fechado alrededor de 250 a. C., que se asemeja a una celda electroquímica. No se han encontrado documentos que evidencien su utilización, aunque hay otras descripciones anacrónicas de dispositivos eléctricos en muros egipcios y escritos antiguos.

Esas especulaciones y registros fragmentarios son el tratamiento casi exclusivo (con la notable excepción del uso del magnetismo para la brújula) que hay desde la Antigüedad hasta la Revolución científica del siglo XVII; aunque todavía entonces pasa a ser poco más que un espectáculo para exhibir en los salones. Las primeras aportaciones que pueden entenderse como aproximaciones sucesivas al fenómeno eléctrico fueron realizadas por investigadores sistemáticos como William Gilbert, Otto von Guericke, Du Fay, Pieter van Musschenbroek (botella de Leyden) o William Watson. Las observaciones sometidas a método científico empiezan a dar sus frutos con Luigi Galvani, Alessandro Volta, Charles-Agustín de Coulomb o Benjamin Franklin, proseguidas a comienzos del siglo XIX por André-Marie Ampère, Michael Faraday o Georg Ohm. Los nombres de estos pioneros terminaron bautizando las unidades hoy utilizadas en la medida de las distintas magnitudes del fenómeno. La comprensión final de la electricidad se logró recién con su unificación con el magnetismo en un único fenómeno electromagnético descrito por las ecuaciones de Maxwell (1861-1865).






SIMBOLOGÍA DE LA ELECTRICIDAD

Al igual que en el trabajo de electrónica, en electricidad necesitamos el diagrama de un circuito, en esta pagina podrás encontrar los símbolos usados en electricidad para el diseño de estos, algunos te serán familiares,porque los has visto en los circuitos electrónicos. 


MAGNITUDES ELECTRICAS

TENSION O VOLTAJE:


 La Tensión es la diferencia de potencial entre dos puntos. En física se llama d.d.p (diferencia de potencial) y en tecnología Tensión o Voltaje. Como ya debemos saber por el estudio de la carga eléctrica la tensión es la causa que hace que se genere corriente por un circuito. 

En un enchufe hay tensión (diferencia de potencial entre sus dos puntos) pero OJO no hay corriente. Solo cuando conectemos el circuito al enchufe empezará a circular corriente (electrones) por el circuito y eso es gracias hay que hay tensión.


Entre los dos polos de una pila hay tensión y al conectar la bombilla pasa corriente de un extremo a otro y la bombilla luce. Si hay mayor tensión entre dos polos, habrá mayor cantidad de electrones y con más velocidad pasaran de un polo al otro. 



INTENSIDAD DE CORRIENTE:

Es la cantidad de electrones que pasan por un punto en un segundo. Imaginemos que pudiésemos contar los electrones que pasan por un punto de un circuito eléctrico en un segundo. Pues eso seria la Intensidad. Se mide en Amperios (A). Por ejemplo una corriente de 1 A (amperio) equivale a 6,25 trillones de electrones que han pasado en un segundo. ¿Muchos verdad? . La intensidad se mide con el amperímetro.




RESISTENCIA ELÉCTRICA:

 Los electrones cuando en su movimiento se encuentran con un receptor (por ejemplo una lámpara) no lo tienen fácil para pasar por ellos, es decir les ofrecen una resistencia. Por el conductor van muy a gusto porque no les ofrecen resistencia a moverse por ellos, pero los receptores no. Por ello se llama resistencia a la dificultad que se ofrece al paso de la corriente. 

Todos los elementos de un circuito tienen resistencia, excepto los conductores que se considera caso cero. Se mide en Ohmios (Ω). La resistencia se representa con la letra R.





POTENCIA ELÉCTRICA:


Depende del tipo de receptor que estemos hablando. Por ejemplo de una Lámpara o Bombilla sería la cantidad de luz que emite, en un timbre la cantidad de sonido, en un radiador la cantidad de calor. Se mide en vatios (w) y se representa con la letra P.







ENERGÍA ELÉCTRICA:

La energía eléctrica es la potencia por unidad de tiempo. La energía se consume, es decir a más tiempo conectado un receptor más energía consumirá. También un receptor que tiene mucha potencia consumirá mucha energía. Como vemos la energía depende de dos cosas, la potencia del receptor y del tiempo que esté conectado.




LEY DE OHM:

Es una ley de la electricidad. Establece que la diferencia de potencial V que aparece entre los extremos de un conductor determinado es proporcional a la intensidad de la corriente I que circula por el citado conductor. Ohm completó la ley introduciendo la noción de resistencia eléctrica R; que es el factor de proporcionalidad que aparece en la relación entre V e R :

                                                 
                                                    V=R.I




ELECTROSTÁTICA Y ELECTRODINÁMICA


 La electrostática es la rama de la física que estudia los fenómenos eléctricos producidos por distribuciones de cargas estáticas 
La electricidad estática es un fenómeno que se debe a una acumulación de cargas eléctricas en un objeto. Esta acumulación puede dar lugar a una descarga eléctrica cuando dicho objeto se pone en contacto con otro. 

La electrodinámica es la rama del electromagnetismo que trata de la evolución temporal en sistemas donde interactúan campos eléctricos y magnéticos con cargas en movimiento. 


Una partícula acelerada pierde energía emitiendo radiación. Este hecho complicó el desarrollo del modelo atómico de Rutherford ya que implicaba que un electrón clásico orbitando alrededor de un núcleo atómico no podía ser estable, ya que los electrones debían perder energía y colapsar contra el núcleo atómico. Este fue una de las motivaciones para construir una teoría cuántica del electromagnetismo.
 
Es de suma importancia en la física.







CARGA ELECTRICA

La carga eléctrica es una propiedad física intrínseca de algunas partículas subatómicas que se manifiesta mediante fuerzas de atracción y repulsión entre ellas por la mediación de campos electromagnéticos. La materia cargada eléctricamente es influida por los campos electromagnéticos, siendo a su vez, generadora de ellos. La denominada interacción electromagnética entre carga y campo eléctrico es una de las cuatro interacciones fundamentales de la física. Desde el punto de vista del modelo estándar la carga eléctrica es una medida de la capacidad que posee una partícula para intercambiar fotones.

Una de las principales características de la carga eléctrica es que, en cualquier proceso físico, la carga total de un sistema aislado siempre se conserva. Es decir, la suma algebraica de las cargas positivas y negativas no varía en el tiempo.


martes, 10 de mayo de 2016

FUERZA ENTRE CARGAS



Los cuerpos cargados se atraen o se repelen según sean las cargas de distinto o del mismo signo, respectivamente. A las fuerzas de atracción o de repulsión se les da el nombre de fuerzas eléctricas o electrostáticas.


El estudio de estas fuerzas fue realizado por Charles A. de Coulomb (1736-1806). Este físico francés, tras inventar un método (la balanza de torsión) de medida de fuerzas de pequeña magnitud, lo aplicó para medir la fuerza que ejerce una esfera fija cargada sobre otra móvil, también cargada. En 1785, como resultado de esa investigación, formuló la ley que describe las fuerzas de interacción entre dos cargas eléctricas.